Vizdoom

Ethan Poe, Nolan Winsman, and Timothy Fields

Abstract— VizDoom is a program that allows the input of
pixel data from the 1993 video game Doom. The revolutionary
aspect of VizDoom is the fact that it relies on Pixel Data.
Artificial Intelligence through pixel data in games has been
done before with Atari games. The convolitional neural network
we worked with for VizDoom is the one prepackaged with
the windows precompiled install of VizDoom on Github. Our
research and work was to implement rigorous data collection
in order to understand how efficient the current convolutional
neural network is at learning. Once a thorough understanding
of how efficient the previous architecture was, We began
implementation of a new convolutional neural network archi-
tecture. This new architecture obtained marginal to substantial
improvements to the Doom agents capacity to learn human like
behavior in gameplay.

I. INTRODUCTION

VizDoom is an Al research platform created for the 1993
video game Doom. It comes with a a deep convolutional neu-
ral network that teaches an Agent to play different scenarios
in Doom. Scenarios such as rooms filled with acid and health
kits. Another scenario is where there the agent must move left
and right to track and defeat a cacodemon. The convolutional
neural network is decent for many scenarios but we wanted
to make it far better. There were many interesting aspects
of working on this project, many were foreseen and there
were plenty that weren’t. One of the things that we had not
predicted was the massive time commitment that this project
required. However, that being said, we were able to collect
a massive amount of data and consistent data at that.

In this article we hope to fully elaborate upon the many
interesting and intricate topics and challenges we faced
during our time spent working on it.

II. RELATED WORK

When we began pondering where to start on the project
we immediately knew that we would need a sound structural
base due to the sheer amount of information and knowledge
that this project demands. That was when we discovered
”VizDoom: A Doom-based Al research platform for visual
reinforcement learning”. [1]

Once we had a solid grasp of what we could/needed to
achieve, we decided that we would need to look at some dif-
fering sources that could either give more information about
our current pool of knowledge in VizDoom or something that
we would be able to compare to in terms of a professional
looking article. That is when we were fortunate enough
to stumbled upon the article “Playing Atari With Deep
Reinforcement Learning” [2]. While this was not another
VizDoom article the incredible amount of raw information
that was actually applicable to our project was stunning. Not

only did we obtain references for structure within the paper
we were able to apply many concepts both in application
and mathematics.

With our understanding of structure and conceptual math
beginning to broaden we knew that the next step was to
begin to seek a deeper understanding of dueling networks as
to continue to make progress in our research. By using the
article titled “Dueling Network Architectures for Deep Rein-
forcement Learning” [3] we began to understand the concepts
of deep reinforcement technologies and their connection to
Vizdoom.

Now with all of our fundamental understandings of the
concepts presented to us we moved onto trying to discover
other sources that would be able to help either give us
inspiration or potnetial goals to look toward. One of the
sources that we discovered was a video running VizDoom
experimenting with an assortment of learning techniques.
”VizDoom Environment. Al Agent Is Playing Doom Using
Reinforcement Learning Algorithms”[4], used algorithms
like Deep Q-Learning, Deep Convolutional Q-Learning, and
A3C. With this in mind and the video showing clear learning
progress this gave us something to work towards as some-
what of an end goal.

One of the last aspects of creating an article that we would
deem worthy of producing was refining and polishing it.
Through the need to construct an article that was not only
coherent but also intriguing and productive enough to be
considered worth while we decided to look at other articles
that we believed had achieved this concept in one way or an-
other. Looking at "PLaying FPS Games With Environment-
Aware Hierarchical Reinforcement Learning”[5], we found
many note worthy aspects of the article that would help us
to raise the level of our own article.

For a final resource we had decided to give some credit
back to the relatively good amount of information that we
were able to gather from Perusall’s “Reinforcement Learn-
ing: An Introduction” by Richard Sutton and Andrew Barto
[6]. This on top of the many other sources that we were able
to find that helped incorporate many interesting concepts into
our article, were incredibly useful. Without those that gave
a strong base, those that helped our basic understanding and
those that helped refine our work we would have gotten no
where. It was through these, that we were able to expand
upon the concept of VizDoom.

III. METHODS

A large portion of this experiment involved adding code
that tracks the data. The experimental procedure goes into
more detail as to how this was done. There were two new

(a) Rocket Basic: Strafe to the Cacodemon and shoot it (b) Deadly Corridor: Survive to the end of the hall by (c) Health Gathering: Find health packs to survive the

with a rocket shooting the enemies
Python files created to track data and aid the experimentation.
There is load in data which is a python file that only contains
the default data class. This class holds data for numerous
variables such as total epochs for how many epochs are in
a training session. Standard Convolutional neural network
variables such as learning rate, discount factor and batch
size. This class is also where many boolean variables are
stored. The most important booleans are skip training and
skip evaluation. To start a training session skip training is
set to False and skip evaluation is set to True. For starting
an evaluation the booleans should be the opposite of the
values when training a scenario. Unfortunately in the current
version of the program, it is not set to be able to start a
scenario training session, then automatically evaluate that
training once the training is complete.

Once we had gathered enough data to establish a baseline
we then implemented a different reinforcement learning
architecture. We used a variation of the Duel Q-network
architecture with additional convolutional layers compared
to the baseline architecture. We wanted to explore if these
additional layers would help improve the accuracy due to the
complex nature of the game. Additionally, we implemented
batch normalization to try and offset some of the side effects
of increasing the depth of the neural network. By standardiz-
ing the output of the previous layer we were able to ensure
that the input to the next layer would have a significantly
more predictable distribution. This normalization process
helped to reduce the number of large variations and outliers
in the data we collected.

The other Python file, graph-data.py is discussed more in
section 5. Most of what it does is load in the evaluation
results for multiple networks, take the average for those
results, and plot the data using matplotlib. Numpy is used to
calculate the average of the list that contains all the training
data. It is important that the data is loaded into the lists
correctly.

IV. APPLICATION DOMAIN

We chose to use doom as our domain because it offered
a unique set of challenges while still remaining within a
reasonable scope of what is achievable in a semester. The
VizDoom code base is already well established and has very
good documentation, and Doom is a much simpler FPS game
than more modern titles. Some of the interesting features

acid floor

of doom include its pseudo 3D environment that allows the
agent to move in three dimensions while also requiring it
to aim in the 2D plane. We believe that it is possible to
add additional features to this existing convolutional neural
network in order to better identify enemy agents and thus
improve the average performance of the agents in VizDoom.

When we started this project we used multiple different
scenarios for training the agents in order to gather as much
data as possible on the behavior in different environments.
We ended up settling on three scenarios to focus on when
evaluating the performance of the different reinforcement
learning architectures.

The first of these scenarios was Rocket Basic Figure 1la.
We chose this scenario because it provided a solid baseline
for us to be able to verify that the agent was evolving and
improving. In this scenario the agent is trapped in a square
room with a stationary enemy “demon” at a randomly gen-
erated position on the opposite wall. This scenario requires
the agent to move left or right to reach a position where they
can hit the demon with a rocket. In this scenario the agents
would start off by moving and shooting randomly, but as
the epochs continued the agents were able to identify the
position of the demon and quickly move to a position to get
an accurate shot.

In the Deadly Corridor scenario Figure 1b the agent gets
a choice between two potential methods of reaching the end
of the level. These choices are highly representative of the
human “fight or flight” response. In this scenario the agent
spans in a small semicircular room with a demon to the left
and right and a corridor extending behind the two demons.
This layout is effectively repeated two more times before
reaching the exit. In this scenario it is technically possible
for the agent to run between the two demons without dying
but the margin for error is very small. Taking this approach
allows the agent to ignore trying to shoot the demons and
focus on evolving better movement strategies, however any
error will likely result in death. The other approach is to
shoot one or both of the demons before moving on to the next
section of the corridor. This approach significantly reduces
the importance of movement but is still potentially risky as
it takes time to aim at the first demon which allows the other
demon to potentially kill the agent.

We also chose to include the Health Gathering Figure 1c
as it provided a very different set of challenges compared

8 Convolutions
Kernal 6 Stride 3

Three RGB Inputs

8 Convolutions
Kernal 3 Stride 2

Linear Layer
192 input
128 outout

Linear Layer 2
128 input
lenlnum actions) outout

(a) Original Architecture: Graphic of the Originl Architecture

Input 8 Convolutions

tout 8 Convolutions Output 8 Convolutions.

Input 8 Convolutions

Input 8 Convolutions Output 8 Convolutions

Output 8 Convolutions

Number of Actions

(b) DuelQNet Architecture: Graphic of the New Architecture

Fig. 2: Architectures

to some of the more typical scenarios. In this scenario the
agent is trapped inside of a large square room and the floor
constantly inflicts damage. In order for the agent to stay alive
it must move around the room to pick up health packs as they
spawn on the ground. This provided a novel challenge for
the agent as the use of weapons was not relevant and the
focus was instead on moving quickly and decisively in order
to pick up the health packs.

V. EXPERIMENTAL PROCEDURE

To track the results a network is saved every |epochs/4]
epochs and the first and last epoch. With most training
sessions being 20 epochs this results in a network saved at
epoch 1, 5, 10, 15, 20. After training for a particular scenario
is complete it is viable for evaluation. Evaluations work by
loading in each network for the saved results and running the
network 50 times or 50 iterations of gameplay. All of these
scores from the gameplay iterations are saved into a plain
text file. Testing the performance of the two architectures
with a certain scenario consits of a training cycle and an
evaluation cycle. A training cyling is 5 training sessions. To
clarify, at 20 epochs the training cycle is training from epoch
1 to 20, 5 times. After all the training and evaluating for a
scenario, all the data is loaded into our graph-data.py which
is a Python file that uses matplotlib to graph the data. This
data will be shown in the results section.

VI. RESULTS

Figure 2 shows the promise of the DuelQNet architecture.
The graphs on the top row display 10 lines, 5 blue which
represent the original architecture and 5 green which rep-
resent the new DuelQNet architecture. The scenario graphs
on the second row, below the graphs just discussed, contain
the same data from the above graphs. These graphs just take

the average of the five lines to display the perfomance more
concisely.

The Rocket basic scenario Figure 3a does marginally to
substantially better with the DuelQNet architecture. The Du-
elQNet learns faster than the original architecture. Towards
the ends of the training they are performing quite similarly.
The Rocket Basic is one of the easiest scenarios. It is
simple for a bot to learn to strafe left and right and track
a Cacodemon.

The DuelQNet architecture does considerably better in
every the Rocket Basic scenario and the Health Gathering
scenario. It does marginally better in the Deadly Corridor
scenario Figure 3b. This is just a difficult scenario to achieve
optimality in. Artem Tkachev was able to achieve near
optimality in this scenario so it is possible, just challenging
[4].

The Health Gathering scenario Figure 3c in particular did
extraordinarily well. Part of this is due to the outlier with
one of the networks getting an average score of almost 1000.
Most of the training lines due dip at certain points.

VII. DISCUSSION

The promising results of the DuelQNet architecture dis-
played in the results section are very promising. While
Deadly Corridor is only slightly more optimal with the
DuelQNet architecture, the other scenarios tested perform
substantially better with the implementation of the Du-
elQNet. The leading theory behind this is that the DuelQNet
is better at motion and navigating the game space of Doom.
It is competent at learning to detect objects like enemies
and health kits. It is not competent enough for the scenario
Deadly Corridor. The greatest challenge with this challenge
is the enemy to the left with the shotgun. If this enemy to the
left is not defeated quckly the Doom agent will be defeated

Rocket Basic

50| — Original Net
DuelQNet

&
3

-100

-150

Average Reward

—200

250

-300

0.0 125 150 175 20.0

Epoch

2.‘5 5.‘0 7.‘5
(a) Rocket Basic: Score of All Training Sessions

Average Rocket Basic

Deadly Corridor

—— oOriginal Net
200 DuelQNet
150 — o

Average Reward
o
£

(b) Deadly Corridor: Score of All Training Sessions

Average Deadly Corridor

80| — Original Net Avg

Health Gathering

1000
—— oOriginal Net

DuelQNet
900 4 @

700 4

600 4

500 o

Average Reward

10.0
Epoch

2.‘5 5.‘0 7.‘5
(c) Health Gathering: Score of All Training Sessions

Average Health Gathering

{ — original Net Avg

—— original Net Avg

DuelQNet Avg
DuelQNet Avg

-100

Average Reward

-150

Average Reward

—200

250

300

DuelQNet Avg

.

&
&
3

2
]
g

Average Reward

I}
3

300 4

'/.—.\'//a

25 5.0 7.5

25 5.0 75 100

Epoch

125 150 175 20.0

(d) Rocket Basic: Average Score of All Training Sessions .
Sessions

10.0

Epoch

10.0
Epoch

125 150 175 200 2.5 5.0 75

(e) Deadly Corridor: Average Score of All Training (f) Health Gathering: Average Score of All Training

Sessions

Fig. 3: Scenario Results

with minimal opportunity for learning.

Another reason the DuelQNet Figure 2b performs better
than the original architecture Figure 2a is due to several
differences. Differences like more convolutional layers and
a much deeper fourth convolutional layer. While we did not
utilize the Dueling Q Network to its maximum potential, it
was more than enough to improve performance in a variety
of scenarios

There are certainly many aspects open to improvement in
the future. One of the biggest things is the implementation
of Nvidia’s Cuda to run the training sessions on an Nvidia
Graphics Card. The training sessions were slow running on
a CPU. Experimentation would be much faster with Cuda
implemented.

Another thing is maximizing the use of the DuelQNet.
The architecture used in this project does not implement the
splitting and re-converging of models which is inherent to
Dueling Q Networks.

Lastly, while the project did implement a lot of automa-
tion, it lacks the ability to run a complete training cycle,
saving the numerous networks that creates, and without user
input, start the evaluation of the saved networks. Currently
the user must start a training cycle and once that is complete,
rename a few directories and variables to point to said
directories. Once all of that is done an evaluation of the
saved networks can commence.

VIII. CONCLUSION

VizDoom is a tremendous stepping stone in artificial
intelligence based on pixel data input. It is a large step closer
to human like simulations compared to Atari video games.

Through the implementation of rigorous data collection to
calculate how efficient a given convolutional neural network
architecture is. The implementation of the DuelQNet greatly
improved the performance in three distinct scenarios. By
combining the new Q-net architecture and the batch normal-
ization we were able to not only improve the results of the
training across many different scenarios but also decrease the
run-time of the simulations as a result of the agents learning
faster from the more detailed and streamlined inputs.

REFERENCES

[1] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaskowski,
“ViZDoom: A Doom-based Al research platform for visual
reinforcement learning,” September 2016. [Online]. Available:
10.1109/CIG.2016.7860433

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Reidmiller, “Playing Atari With Deep
Reinforcement Learning,” Deepmind Technologies, 2013. [Online].
Available: https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf

Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot,
and N. de Freitas, “Dueling Network Architectures for Deep
Reinforcement Learning,” November 2015. [Online]. Available:
https://arxiv.org/abs/1511.06581

A. Tkachev, “VizDoom Environment. Al Agent Is Playing Doom
Using Reinforcement Learning Algorithms,” 2019. [Online]. Available:
https://www.youtube.com/watch?v=0fyUqZ3tvU8

J. Weng, S. Song, H. Su, D. Yan, H. Zou, and J. Zhu, “Playing
FPS Games With Enviornment-Aware Hierarchical Reinforcement
Learning,” 2019. [Online]. Available: https://cdn.discordapp.com/
attachments/835262038606479401/837069714370723840/0482.pdf

R. S. Sutton and A. G. Barto, “Reinforcement Learning: An
Introduction,” 2014. [Online]. Available: https://app.perusall.com/
courses/artificial-intelligence- 121780934/suttonbartoipribook2nded

[2]

[3]

[4]

(5]

(6]

IX. HONOR CODE

We have acted with honesty and integrity in producing this
work and are unaware of anyone who has not
-Nolan Winsman, Ethan Poe, Tim Fields

